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Information theoretic extended entropy for steady heat 
conduction in dense fluids 

R E Nettleton 
Department of Physics, University of the Witwatersrand, Johannesburg, South Africa 

Received 18 April 1988 

Abstract. A phase space distribution for a far-from-equilibrium steady state in which 
thermodynamic temperature, and heat flux, J, are specified is calculated by maximising 
the information theoretic entropy. When this distribution is used to calculate free energy, 
F, the latter is obtained as  a function of the distribution moduli which, in turn, are calculated 
from a consistency condition as functions of J and T. The coefficient of the O ( J 2 )  term 
in F can be expressed in terms of the radial distribution function, g,, and three-particle 
distribution, g,. A numerical estimate is made for a hard-sphere model of liquid Ar at 
87 K and high density, using the Percus-Yevick solution for g2 and the Kirkwood superposi- 
tion for g,. The estimate confirms the conclusion of an earlier theory that non-linear effects 
at liquid density are negligible except, possibly, for unrealistically large J. Fluctuation 
theory is invoked to make an estimate of the negligibly small O(J4) term in F. 

1. Introduction 

By maximising the information theoretic entropy, one can derive a phase-space distribu- 
tion p ( T )  appropriate to non-equilibrium steady states (Levine and Tribus 1979, 
Zubarev 1974). This approach has been applied by Jou er a1 (1984) to the case where 
there is a steady heat flux, J = (&, where j (r)  is the heat flow expressed as a dynamical 
function of particle coordinates and mfmenta. The maximisation is effected subject 
to the subsidiary condition that J = 5 pJ dT in the steady state. In the present paper, 
we wish to extend this work to make numerical estimates of the first two J-dependent 
terms in the Helmholtz free energy. The free energy is a functional of p which in turn 
depends on J, allowing us to relate the O ( J 2 )  and O(J4) terms in F to the two- and 
three-particle distribution functions. The latter can be estimated from calculations 
found in the literature for dense hard-sphere fluids. The results can be compared with 
earlier calculations (Nettleton 1987a) based on extended non-equilibrium thermo- 
dynamics, where N, V, T and J are independent state variables. The Cattaneo-Vernotte 
equation for aJ/ar,  extended to include non-linear terms, was cast in Onsager-Casimir 
canonical form and the J-dependence of F was extracted by applying reciprocity and 
a model for the interaction between system and surroundings. 

The system we consider is taken to be a macroscopically small cube of side 1 
immersed in an infinite medium in which there is a steady heat flow. The entropy is 
defined by an integral over accessible phase space, 
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which is maximised subject to the specification that total energy is E and the heat 
flow J. Thus we solve the variational problem 

( 2 )  S ( K  - I S - P E  - y .  J ) = O  

yielding 

p = z-' exp(-PA - y j )  (3) 

where P and y are Lagrange multipliers and fi the classical Hamiltonian. The 
generalised partition function (Jou et a1 1984) is 

.. 
Z = exp( -@A - y 3) dT. J 

The Lagrange multipliers are determined from the consistency conditions 

E =  p A d T  I 
(4) 

J = 2-' 9 exp(-PA - y * j )  d r .  ( 5 6 )  I 
Equation ( 5 a )  gives P =  K KT as a function of E = Uo(N,  V,  6)  and y, and this 
determines the thermodynamic temperature, T, as a function of y and the local 
equilibrium temperature, 0 (Jou et al 1984). U, is the equilibrium caloric equation of 
state. Equation (56) determines the coefficients y o ,  y2 in an expansion for y :  

y = y o ( N ,  V,  T ) J + y 2 J 2 J +  . . . .  (6) 

Thus ( 5 a )  determines T as a function of 6 and J. 
The linear terms in ( 6 )  have been shown (Jou et a1 1984) to obey 

y = p @  = - p  aF/aJ (7) 

where 
thermodynamic formalism where 

is the thermodynamic force conjugate to J in the extended non-equilibrium 

d F = - S d T - P d V - CP d J. 

We shall show here that (6) and (7) hold when we include y 2 .  Thus if we expand 

(8) 

F = F o ( N ,  V, T ) + f v 1 J - : v 4 J 4 + .  , 

then 

@ = K T ~ = - v J + v ~ J ~ J +  . . .  (10) 
and we can determine v2( N, V,  T )  and v4, for comparison with earlier results (Nettleton 
1987a), from the consistency condition ( 5 b )  which yields expressions for yo and y 2 .  

In 5 2 we shall write down the consistency conditions from (5b )  which, in principle, 
determine yo and y 2 .  y o  can be expressed in terms of the equilibrium pair and triplet 
distribution functions and is thus calculable when the latter have been estimated. In 
0 3, we shall summarise the derivation of ( lo),  including its extension to include v4.  
In 0 4, we shall present an approximate method, based on the Einstein fluctuation 
distribution for fast variables, of estimating y z  and u4 when the five-particle equilibrium 
configuration-space distribution function is not known. The latter result, plus the 
expression from § 2 which relates u2 to the radial distribution function, will be used 
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in $ 5 to estimate v2 and v4 for a hard-sphere model of liquid Ar at 87 K. These results 
will be compared to an earlier estimate (Nettleton 1987a) for this model which applied 
reciprocity to the kinetic equation for the approach of J to the steady state (non-linear 
Cattaneo-Vernotte equation). Both estimates show that the v4 term in F and O(. f2)  
contributions to P and to T-B should be negligibly small under realisable conditions 
at liquid density. This result will be related in the discussion of $ 6  to the kinematic 
conditions which should apply to the kinetic equation for J. The results and conclusions 
of the paper will be summarised in $ 6  and the effect of various approximations 
discussed. 

2. Determination of y 

Expanding the integrand in (56) in powers of y and introducing ( 6 ) ,  we obtain for 
the consistency conditions that (5 b) should hold identically: 

J = -yoZO1 J. j j  exp(-Pfi) dT 5 

J J 

where 2, is the partition function of (4) evaluated with y = 0. Using (1 la) 
( l l b ) ,  we find that the latter equation becomes 

y:(6Zo)-’ 1 (J. j ) 4  dT = y2J4+ty iJ4 .  

This equation can yield y 2  provided we can extract an estimate of yo from 
in addition, evaluate the integral. 

1984) 
To proceed further we introduce the expression for J (Nettleton 1987a, Jou et a1 

to simplify 

(12) 

( l l a )  and, 

1’ j=C [ ( ( P f / 2 m ) - h + $  I f 1  C d’aj (13) 

where 4 is the pair potential, Fy is the force on particle i produced by the interaction 
withj, h is the enthalpy per particle and S is the unit tensor of rank two. On substituting 
(13) into the integral in (1 la ) ,  we get 

l6 5 jj exp( -PA) dT 

‘$1 r ! J r i k F ; I ’  F t k +  ( p f / 2 m ) - h + f  c48,) z, ‘ t k F 1 L ] .  (14) 

If we consider the middle term, we see on carrying out the momentum integration 
that it is proportional to (pf /2m)  = ~ K T .  Terms in the integrand with j = k will reduce 

1. k ( I * !  



3942 R E Nettleton 

to N (  N - l)p','( r )  multiplying a function of r, where p'"( r )  is the probability ampli- 
tude, normalised to unity, for a particle at r, given that there is a particle at the origin. 
Terms with j # k yield an integrand proportional to N (  N - 1)( N - 2 ) ~ ' ~ '  multiplying 
a function of rI2 and r13, where p '3 )  dr, dr, is the distribution, normalised to unity, 
for particles at r2 and r,,  given that there is a particle at the origin. 

Similar considerations apply to the remaining terms in (14) and we find that (1 1 a )  
reduces to 

1 = -( KTyo/m16) fN( N - 1) p"' dr,, [:( c$;2)2ri2 + ( 5 ~ 7 7 2  - h)f$i2rI2 ( I  
+ ~ f $ i 2 4 1 2 r 1 2 + ~ K T f $ 1 2 + ~ f $ ~ , ]  +dN( N - 1)( N - 2) 

5 p'3' dr12 drl3(&$i24;3r12r13+ 4124;3r13+%b12f$13) 

+ NKT(y.KT-5h) . (15) 

g 2 ( r )  = n - ' ( ~ -  1)p'" (16) 

g3= n - 2 ( ~ - l ) ( ~ - 2 ) p ( 3 ) = g 2 ( 1 , 2 ) g 2 ( 1 ,  3)g2(2, 3) (17) 

) 
Equation (15) can be reduced further by introducing the radial distribution function 

which is the form most often tabulated. Also we can use 

where the approximation is the Kirkwood superposition, useful at the high densities 
we shall consider in P 5 (Alder 1964). There we shall evaluate the integrals in (15) for 
the hard-sphere model. For that model, tabulations of g2( r )  are available. 

A reduction similar to the foregoing could be effected in (12). There, however, we 
should have to express the integral in terms of g,, for which reliable values are hard 
to obtain at high density. Accordingly, a different fluctuation theoretic approach to 
evaluation of the integrals in (1 1 a )  and (1 1 b) will be developed in 0 4. This permits 
us to use ( l l a )  alone to estimate both v2 and v, by evaluating the integral in two ways. 

3. Relation between distribution modulus and extended free energy 

To derive (7) as far as the lowest two orders in the J expansion of a, we substitute 
(3) into 

F =  p f i d r + K T  p l n p d r .  (18) I I 
The substitution, after simplification via ( l l a ) ,  gives 

F =  Fo( N, v, T)-fyoKTJ2+iY;KTJ4 -hy",i' ( J *  i), exp(-Pfi) d r .  

F = Fo - 4 K  TJ2 - a Y 2 K  TJ4 + o( J 6 ) .  (20) 

Vq = K Ty, (21a) 

v2 = - K T Y ~  (21b) 

(19) / 
If we use (12) to eliminate the integral, (19) yields 

Comparison of (20) with (9) gives 
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in agreement with (7). We can thus calculate v2 and v4 from (12) and (15) which 
determine y 2  and y o ,  respectively. However, because of the difficulties in evaluating 
the integral in (12), we shall use the method of § 4 to obtain v4. Once we have v 2 ,  
we can estimate the coefficients P2 and U, in the expansions: 

P = p0( N, v, T )  + P,J' + o ( J ~ )  (22a) 

U =  Uo(N,  v, T)+ u2J2+O(J4). (226) 

p 2 -  - - L  2av2 /av  (23a) 

u2 = +( u2 - T av,/a T ) .  (23b) 

Application of the integrability conditions yields (Nettleton 1987a) from (8): 

Equations (23a, b) will be used in § 5 to evaluate P2 and U, for hard spheres. A 
comparison can then be made with an earlier estimate (Nettleton 1987a) obtained in 
a different way. 

4. Approximate evaluation of v4 

Since evaluation of the integral in (12) requires accurate knowledge of g,, we shall 
develop here an approximate estimate of v4 based on the application of fluctuation 
theory to the integral in (1 1 a ) .  If J is taken to point in the z direction, (1 1 a )  becomes 

j :  exp(-Pfi) dT = - y o  p ( u ) u i  du (24) 1 = - yoz ; l  I I 
where p ( u )  is the probability amplitude for a fluctuation U in the value of J in a state 
where T is given and J = 0. We shall make an estimate for p ( u )  in terms of v2 and 
v4 by invoking fluctuation theory, neglecting v6. On evaluation of the integral in (24) 
we obtain an expression for v4 in terms of v 2 ,  and v2 is in turn obtainable from (15) 
and (21b). This procedure can be extended, since we could apply it to the integral in 
(12) yielding, together with (24), a pair of equations for evaluation of v4 and vi, when 
the latter is not neglected. Alternatively, if we could evaluate g,, then a second 
evaluation of the integral in (12) using p ( o )  would yield an equation relating v6 and 
v4 .  These procedures are only approximate, but they yield orders of magnitude in 
agreement with an alternative approach (NTttleton 1987a). 

To arrive at p ( u ) ,  we first observe that J is a fast variable, so that fluctuations are 
reasonably assumed to occur in a time short compared with the time for appreciable 
heat exchange with the surroundings, i.e. the fluctuation is adiabatic when J = 0. Under 
these circumstances, we should have 

p(  U) = C exp A S (  u ) / K  

where, since U = Uo(N, V, e ) ,  with 6 the local equilibrium temperature, we have 

AS(U)=S(N, v, U, U ) - S ~ ( N ,  v, u ) = s ( N ,  v, e, v) -s , , (N,  v, e). (25) 

0 - T = ( C,)-' U2J2 + O(J4) (26) 

We can transform from 6 to T by using 

where C,  is the heat capacity at constant volume. 
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To calculate AS we assume the ansatz 

so that 

Integrating, we obtain 

~ s = o - l { - L t ;  2 2 U 2 + L  4 u  4 [v4-F2(C*e)- 'v2]+. . .} .  - 

We now employ (26) to transform back from 6 to T, yielding 

A S =  T - ' ( - f V 2 U 2 + f C . + U 4 + .  . ,) (30a) 

C4 = v4 - ( C,  T ) - ' (  v2 - T a v2/a T ) (  v2 + T a v2/a T) (30b) 

in the approximation which neglects higher powers of U and O( i:). 

that the latter becomes 
When the distribution defined by (30c) and (30d) is introduced into (24), we find 

(31) 

This result and (21 b) yield i, = 0 as the simplest solution. This implies that p (  U) is a 
Gaussian, as usually assumed. Setting C4 = 0 in (30b), we obtain 

(32) 

Equation (32) will be used in 0 5 to estimate v4/v2 in a dense hard-sphere fluid for 
comparison with an earlier estimate (Nettleton 1987a) based on the application of 
reciprocity to the kinetic relaxation rate equation for J. In the current evaluation v2 
is obtained by specialising (15) to a hard-sphere potential. 

1 + C4( ~ K T /  vi) + O( C:) = - v2/ Y,,KT. 

~4 = (C, T)-'( ~2 - T a v2/a T ) (  v2 + T a v2/a  T ) .  

5. Numerical results for hard spheres 

In this section, we shall evaluate v2 from (15) and v4 from (32) for a rigid-sphere 
model of liquid Ar at 87 K, with parameters listed in table 1. The effective hard-sphere 
diameter, CT, is chosen to fit viscosity measurements (Hirschfelder et a1 1954). The 
density parameter z = 1.68 is not far below the gas-solid transition at z = 1.866, since 
we want the Kirkwood superposition approximation to hold, as well as the earlier 
results (Nettleton 1987a) with which the present estimates are to be compared. In the 
previous calculations we assumed a density high enough so that there should be 
negligible particle exchange with the surroundings during the relaxation time for J. 
Also, we shall use the Percus-Yevick results for g ,  (Wertheim 1863, Thiele 1963) which 
works best at high density. 
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Table 1. Hard-sphere model of liquid Ar at 87 K. Atomic mass m, hard-sphere diameter 
U, number density n, r7 = ( r / 6 ) n a 3 .  Subscript ‘1’ on coefficients, -Y? of lowest term in @ 
and u4 of next highest term, denote results of the present paper. Subscript ‘2‘ denotes 
computations from (46) and (47) derived in earlier work. Similar notation applies to P 2 ,  
the coefficient of the O(J’)  term in P. ( U ~ ) ~ / ( U ~ ) ~ = ( T - B ) ~ / ~ T - ~ ~ ~ .  

m 

nu’ 
n 

U 

6.633 1 x kg 
3.64 x lo-’’ m 
0.800 
1 . 6 6 ~  lo2’ m-3 
1.68 
0.419 
7.13 
0.286 

3.48 x lo-‘ 
3.17 

-9.27 x lo-’’ 

1.1ox 10-2 

m4 s2 J-’ 
-2.19 x lo-’’ 
-4.58 x 1 0 - l ~  

m4 s2 J - z  
,4 s2 J-’ 

-9.96 x 1 0 - l ~  m4 s2 J - 2  

To evaluate the integrals in (19, we invoke (17) and the well known results for a 
hard-sphere potential (McQuarrie 1976, p 280) 

where Po is the equilibrium equation of state. The integrals proportional to and 
to no derivatives thereof vanish, since 4,2 = 0 for r > U and g( r )  + 0 exponentially for 
r < U as 412 approaches its hard-sphere limit. 

The integral proportional to ( 41J2 requires more attention. Defining the direct 
correlation function 

c ( r ) =  g ( r )  - y ( r )  (34a 1 
y ( r )  = g exp(P4)  (34b) 

g( r )4’ ( r )  = P - ’ [ y ’ ( r )  exp(-P4) - g‘(r)I. (35) 

we have 

This yields an expression for g(  r ) ( 4 ’ ) * r 4  dr  as the sum of two integrals. These are 

J g’( r )4’ (  r ) r4  d r  = g(  r )4’ (  r)r412 - J g(  r)[ +”( r)r4 + 44’( r)r3] d r  (366) 
0 0 

where we start with a continuous potential and eventually take the hard-sphere limit, 
In this limit, 4”+ 0 everywhere, and all terms but the last in (36b) + 0. Thus 

jox g’(r)4’( r)r4 d r  = 4P-’a3g2(uf)  = -4P-lu3c(a-). (37) 

Here we have invoked the continuity of y at U. 
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In (37) we shall employ the function c ( r )  obtained (Wertheim 1963, Thiele 1963) 
from the solution of the Percus-Yevick equation for g , .  This is (Gray and Gubbins 
1984, p 345) 

(38a) 

(38b) 

CI ~ 6 9 ( 1  + f ~ ) ~ / ( l -  7))4 ( 3 8 ~ )  

( 3 8 4  c = 1  

77=(7r/6)nu3. (38,) 

Y'(u') = - ( 9 ~ / 2 ~ ) ( 1 -  ~ ' ) / ( 1 -  7714 (39a) 

c ( u - ) = ( - i + ~ 7 7 - ~ 7 7 3 ) / ( i - 7 7 ) 4  (39b) 

c( r )  = co+ cl(  r / u )  + c3( r /  u ) ~  

CO = -( 1 + 2 7))2/ ( 1 - 7))4 

( r < u )  

3 - 277co 

Using this approximate solution, we have 

which can be used in (36a) and (37), respectively. 

in (15), the only non-vanishing term is proportional to 
If the Kirkwood superposition and (33) are applied to the integral involving p ( 3 )  

jz3 g 3 ( r I 3  = U, r23 = U, cos 8) sin 8 d e  = gz (  a+)' L3 g2( 1 2 3 )  sin 8 d8  (40) 

where 8 is the angle between rl3 and rI2, and r:3 = 2u2(1 -cos 8). Setting x = r 2 3 / ~ ,  
we find the integral is 

g 2 ( r Z 3 )  sin 8 d e  = 

I, is evaluated numerically from tabulated values of g 2 ( x )  (Throop and Bearman 1965). 
This yields an estimate of II which is slightly too small, since g 2 ( u )  in the Percus-Yevick 
solution is too low. We use the extended Simpson rule for the integration (Abramowitz 
and Stegun 1964, p 886). 

Collecting the results in (33)-(41) for the various terms in (15) and setting h = 
z T +  Pori-', we find that the expression for vz assumes the form: 

- v;' = ~ 7 ; '  = ( n / m ~ ~ ~ ) { 2 7 7 [ 4  - (21 77/2) + (13q3/2)]/(1 - 7714 - (2 + tz , )  

3 

x [(Po/ n K  T - 1)2 -4 + 5 ( ;  + Po/ n K  T)]}. (42) 

The equation of state Po has been obtained (Ree and Hoover 1964) by fitting a Pad6 
approximant to computer results. This yields 

Po/nKT= 1 f Z @ , / @ 2  (43 a 1 
z = $7" (436) 

0, = 1 + 0.063 5072 + 0.017 329z2 (43c) 

@ 2 =  1-0.561 493~+0.081 3 1 3 ~ ~ .  (43d) 
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Equation (42) shows that u2 is proportional to T-', so that -Tau, /aT=2u2.  If 
we use this in (23b) and (32), we find that 

~ q /  ~2 = -(9/2Cv T )  ~2 

( T  - e ) / e  = - V ~ J ' / N K @ .  
(44a) 

(446) 
To evaluate P 2 / P 0  using (23a) and (42), we must evaluate a I , / a ( n u 3 )  numerically, 
which can be done since g2(x) in (41) is tabulated for a range of densities (Throop 
and Bearman 1965). We use five-point differentiation (Abramowitz and Stegun 1964, 
p 919) to find ag2/a( nu') and then integrate the derivative by the extended Simpson rule. 

The numerical results for the hard-sphere model of liquid Ar at 87 K are listed in 
table 1. The density nu2 = 0.8 has been chosen in the range where the approximations 
work best. The ratios (P2/P0)', ( U ~ / U ~ ) ~  are calculated from (42) and (44a). For 
comparison we calculate the same ratios, (P2/Pc)2, etc, from the earlier work based 
on application of reciprocity. The latter gave (Nettleton 1987a, equations (4b), (24) 
and (26d)) 

(45) 
where a; is the coefficient of volume expansion, calculable from (43a). Also, in a 
form specialised to the hard-sphere case, the earlier work gave 

(v2I2 = (PmV/Po) [3+  (Po/ nKT) Tail-' 

(v4/v2)2= (e;+ Pon-'a;)-'{(P2/Po)( C;-3POn-'a;) 

- [ ( 3 v , / ~ e )  + ~ ( a " , ) ' ( 2 n ) - '  a2~,/av2]} (46) 
where e ; = 3 ~ / 2 .  Equation (45) shows that ( u ' ) ~  is proportional to T - ,  like (vJ1  
from (42). The values in table 1 show that (45) and (46) predict a negligibly small 
dependence of P and ( T  - e ) / e  on J 2  as do (42) and (44a, b )  for accessible values of 
J. However, the values from the earlier work (Nettleton 1987a), although of the same 
order of magnitude, are systematically higher than those based on (42). Further 
discussion of these results, including a kinematic reason for the smallness of u4/ u2 ,  
will be given in 9 6. 

6. Discussion 

Equations (45) and (46) were obtained in the earlier work (Nettleton 1987a) by arguing 
that, at liquid density, the effect of interactions between system and surroundings can 
be expressed in terms of the thermodynamic pressure, as in derivations of the virial 
equation of state relating P to g 2 .  This holds, provided there is negligible diffusion 
across the boundaries during the short time required for J to approach its steady state 
value, given by the Fourier law. By contrast, in the present paper we have a method 
which can be applied at all densities provided we have accurate tables, e.g. from 
computer simulations, of g, and g,. This permits evaluation of the integrals in (15).  
Such an evaluation has been made here only at liquid density, where we can use the 
Kirkwood superposition for g3 and the Percus-Yevick equation for g,, and where we 
can compare the numerical estimates of P2/P0 and u4/ u2 with results obtained by the 
earlier high-density methods. In the gaseous region, non-linear transport can be 
approached via the Boltzmann equation and so methods like those developed here 
may not be needed. 

In the liquid range, the present and earlier estimates of P2/ Po and ( T - e ) /  6 both 
indicate that non-linear effects could not be seen unless .fa 10" W m-' which is highly 
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unrealistic even for a computer simulation. A kinematic reason for this small effect 
can be found in an earlier study (Nettleton 1987b) which evaluates v 2  and v4 by 
comparing the kinematic equation predicted for a flux such as J according to extended 
non-equilibrium thermodynamics with a similar equation assumed to have been derived 
from a model, Equation (40a )  of the latter work predicts that, if there is no state 
variable whose time derivative equals J, then v 4 / v 2  is proportional to the coefficient 
of the O(J4) term in the model equation for J, This O(J4) term should be negligibly 
small in physically realisable states, since we want J = -( ~ / T ) J  + . . . to express the 
inertial effect that J does not respond in times <<T, while J approaches the Fourier 
law in a time - T if a constant V T is applied. T is approximately the mean life of a 
hypersound phonon. Thus for a fast variable 4, F should have an appreciable term 
O( Tj4) only when there is a state variable a such that 6 = &. Under these circumstances, 
the O(+j4) term in F is not proportional to the O(G4) term in the model equation for 
4 and the latter could be zero without implying negligibility of the O( 44) contribution 
to F. Similar conditions apply to a diffusion flow where likewise the flux is not the 
time derivative of a state variable. Non-linear effects have been found in the latter 
case to be very small (Nettleton 1988). 

While the orders of magnitude of the estimates based on (42) and  (45a) on the 
one hand and  (46) and (47) on the other are the same, the present work predicts values 
of U , ,  ?‘,/Po and v 4 / v 2  (table 1) which are systematically smaller than those based on 
the earlier work (Nettleton 1987a). If we ask whether this could stem from using the 
Percus-Yevick g, to calculate I , ,  we note that I ,  should be underestimated by a small 
amount, because the Percus-Yevick solution underestimates g, at r = (T. However, a 
larger I, in (42) should lead to a smaller v2 and accentuate ( Y ~ ) ~ / (  v,), . The use of 
the Kirkwood superposition could have a more important effect. However, 41, = 0.849, 
and  even if the I ,  term should be vanishingly small this could not change the estimate 
of v 2  by a factor of three. The term proportional to 7 in (42) is small and  would have 
to be grossly underestimated by the Percus-Yevick theory to appreciably change the 
estimate of v 2 .  The magnitude of ( v2)*/( v2), in table 1 should therefore not be ascribed 
to the approximations used here. We conclude that ( v2)2 may be an  overestimate. 

In addition to use of the Kirkwood and  Percus-Yevick approximations in calculating 
v 2 ,  we have made further assumptions in § 4 to estimate v4.  Since we have estimated 
T - lo-” s (Nettleton 1987a) we commonly assume that the dynamics of fast variable 
relaxation is the same as that in a closed system. This means the relaxation time should 
be short compared with the time for diffusion of appreciable energy across the 
boundaries. Thus the fluctuation probability distribution should be given by the 
Einstein function eXp(bS/K) when J = 0. Corrections (Nettleton 1984, 1985) will be 
proportional to a power of J.  The methods of § 4 are intended to provide an  order-of- 
magnitude estimate when reliable results for g5 are not available. If g, can be estimated, 
we can use (12) in place of the methods developed in § 4. 

Agreement between the estimates of P2/Po in table 1 is poorer than for the other 
functions calculated. In the present paper we have had to calculate aZ,/an by numerical 
differentiation, as well as to calculate aP,/an. At the same time, in the earlier work 
(Nettleton 1987a) it was necessary to estimate a’v,/a V 2 .  Uncertainties in these estimates 
probably increase the error in both the present and  the earlier calculations and account 
for poorer agreement. 

An important consequence of the smallness of non-linear effects for reasonable 
magnitudes of J is that, if we solve the non-linear Cattaneo-Vernotte equation in the 
steady state, we get an  analytic expansion for J in powers of VT,  in contrast to the 
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viscoelastic case where pressure and internal energy can depend on the power of the 
shear rate when the latter is large (Hanley and Evans 1982, Nettleton 1 9 8 7 ~ ) .  
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